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Abstract | In [1] it was described how general-
ized concatenated codes can be constructed on the basis
of modulation with memory. In this paper we apply
this idea to construct encoded (non-binary) Gaussian
filtered CPM systems (GCPM). One possible application
is EDGE (Enhanced Data Rates for GSM Evolution),
a project of the ETSI (European Telecommunications
Standards Institute), where higher data rates will be ob-
tained by replacing the GMSK modulation (and coding)
of the GSM system by some Higher Level Modulation
(and appropriate coding). A GCPM construction has
some obvious advantages compared to other proposed
encoded modulation schemes such as encoded 8-PSK.

I. I NTRODUCTION

Continuous phase modulation (CPM) is known as a
power and spectral efficient modulation scheme suitable for
application in digital communication systems [2]. An im-
portant property of CPM is the constant envelope which
avoids the necessity of expensive linear amplifiers.

With respect to the application EDGE, we considerM -
ary Gaussian filtered CPM (GCPM) as a Higher Level Mod-
ulation in this work. This includes the popular binary
case which is known as Gaussian minimum shift keying
(GMSK) [3] and used in the GSM system. For GMSK,
the alphabet size isM = 2 and the modulation index is
h = 1=2. Thus GMSK can be seen as a subset of anM -
ary GCPM scheme withh = 1=M . Therefore GCPM can
be used for transmitting the GSM trainings sequence un-
changed in EDGE as in the original GSM system without
the need for two different modulators.

The traditional strategy is to construct encoded GMSK
systems by matching binary convolutional codes and joint
demodulation and decoding in the combined supertrellis by
means of maximum-likelihood sequence detection based on
the Viterbi algorithm [4]. In [5] an alternative two-stage re-
ceiver was also investigated which consisted of the separate
demodulation of GMSK followed by the decoding of the
convolutional code.

It was shown in [1] how generalized concatenated codes
(GCC), or multilevel codes, can be constructed on the basis
of inner modulation with memory, namely tamed frequency

�This work was in part supported by theDeutsche Forschungsge-
meinschaft DFGin Bonn, Germany.

yRevised Version (V5)

modulation. Thereby, an additive white Gaussian noise
(AWGN) channel was assumed. We now apply this ap-
proach to non-binary GCPM signals. In other words, we
consider GCC constructions with inner nested system of
GCPM signals and outer binary convolutional codes with
different error correcting capabilities. In this paper, we
show results for encoded 4-ary and 8-ary GCPM over an
AWGN channel. The latter is of special interest, because it
directly could be compared to 8-PSK with Gaussian filtering
and additional coding, which is the proposal for modulation
in EDGE.

II. GENERALIZED CONCATENATED CONSTRUCTION

A. Modulation

The usual description of a CPM signal can be found
in [2]. In this paper we want to use a different approach,
called tilted phase representation, which will be described
very briefly in the following (for more details see [6]). It al-
lows the decomposition of a CPM modulator into two parts:
A linear continuous phase encoder (CPE) and a memoryless
modulator (MM).

In general, a CPM signal can be described by
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andW (�) is some information independent term, given
exactly in [6]. The phase response is defined byq(t) =

R
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f(�)d� wheref(t) is the frequency response. For
Gaussian filtered CPM it can be expressed as

f(t) =

1

2T

s

�

Q

�

2�B

b

t� T

s

=2

p

ln 2

�

�Q

�

2�B

b

t+ T

s

=2

p

ln 2

��

whereQ(t) =

R

1

t

(1=

p

2�) exp(��

2

=2)d� andB
b

T

s

is
the normalized bandwidth. Since the frequency pulse has
an infinite duration it is limited for practical reasons toL
symbol intervals. The pulse lengthL can be considered
as the memory of the modulator. In order to preserve the
spectral characteristics, its value should be chosen large
enough, so thatq(LT ) = 1=2 is satisfied.

One can directly see from the above representation that
the tilted physical phase and the transmitted GCPM signal
within some time interval[nT
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which is an accumulation of all former information sym-
bols. Using this fact, the GCPM modulator can be de-
composed into a time-invariant memoryless modulator and
a time-invariant continuous phase encoder with memory,
which we call the GCPM encoder. It follows that the mod-
ulator state can be uniquely described by theL-tuple
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Therefore,M -ary GCPM withh = 1=M can be represented
by means of a trellis diagram which containsML nodes
(states) at each tier and each node consists ofM incoming
andM outgoing branches. It can be seen from Fig. 1 that the
conventional GCPM encoder model results in an encoder
with feedback.

Fig. 2 shows the same modulator with an alternative real-
ization of the continuous phase encoder. The adders in the
right part of this CPE can also be realized in the memory-
less modulator. Therefore it is possible to realize an equi-
valent feedback-free GCPM modulator with the same num-
ber of states, if theM -ary input symbols are differentially
encoded by a conventional precoder with transfer function
T (D) = 1 � D (subtraction is carried out moduloM ).
This modulator is shown in Fig. 3. It realizes a modified
GCPM scheme (MGCPM) with the same set of output sig-
nals and the same spectrum but with different mapping from
information symbols to output signals compared to the con-
ventional GCPM.

The input sequence of the GMSK modulator after the
differential precoder is

v(D) = u(D)(1�D)

whereu(D) is the D-transform of the precoder input se-
quence. The MGCPM continuous phase encoder including
the precoder can be described by the generator matrix

G(D) = (1; D; : : : ; D

L
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A state of the GCPM encoder trellis at a timen can be ex-
pressed by theL-tuple
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and a branch in the trellis can be defined by
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In the following part of out paper only the MGCPM modu-
lation is used.
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Fig. 1: Decomposition of anL-response GCPM modulator.
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B. Partitioning with Scrambler

For the construction of a GCC scheme, a partition-
ing method is needed which partitions the inner system
(here MGCPM modulation) into nested subsystems with
improved characteristics. We apply the partitioning method
via scrambler as presented in [1], [7], and [8] to increase
the Euclidean distance in each partitioning step. In the fol-
lowing the main idea is shortly described. For more details
see [1], [7] and [8].

Consider the trellis diagram of MGCPM where each
path in the trellis described by a sequence of transitions cor-
responds to a transmitted MGCPM signal. In order to obtain
a subsystem of MGCPM signals, a path puncturing method
can be considered where within the trellis, paths are deleted
by puncturing certain transitions

n

in the trellis by period-
ically fixing certain bits in the information sequence. The
trellis with the reduced set of paths gives the subsystem.



The aim is to reach in all subsystems a higher Euclidian dis-
tance compared to the original set of signals. To achieve
this goal, distances between all possible pairs of signals in
the original set have to be calculated. Then, if it is possible,
the signals of pairs with small distance have to be put into
two different subsets by means of partitioning. (In case of
partitioning of linear convolutional codes, it is sufficient to
regard always only the linear subcode and its free distance
(see [9] and [10]). That is not sufficient for nonlinear case
that includes the partitioning of MGCPM.)

Table 1: Inverse Scrambler Matrices for4-ary and8-ary
MGCPM withB
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In most cases, using the input sequence directly for the
puncturing (we call it arbitrary partitioning) does not con-
sistently improve the distances within the subsets. In order
to find the best path puncturing, the mapping of the informa-
tion sequences to the signals is changed by a scrambler. The
cascade of this scrambler and the original MGCPM encoder
can be considered as an equivalent MGCPM encoder.

A systematic computer search was performed to find the
best scrambler matricesC

m

for 4-ary MGCPM withm =

2; 4 partitioning levels. The results are listed in Table 1 in
form of the inverse Scramblers whered2;(j) is the squared
free Euclidean distance and�2;(j) is the normalized squared
free Euclidean distance in the MGCPM (sub)systems of step
j, j = 1; 2; : : : ;m.

For 8-ary MGCPM withm =3 partitioning levels, the
best scrambler that could be found up to now is identical to
the unity matrix (I

3

). Although usingI
3

is equal to arbitrary
partitioning (without a scrambler), increased distances are
obtained in the subsets.

A second scramblerC
3

for 3-level partitioning of8-ary
MGCPM can be directly constructed using the scrambler
C2 for 4-ary MGCPM. This can be done by simple expan-
sion ofC�1
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where the first subset of 8-MGCPM can be regarded as
4-MGCPM having the same distance properties. There-
fore, one gets the same squared Euclidean distance
d
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8�MGCPM

= d

2;(3)

4�MGCPM

= 5:11 in the third partition-
ing step as in the second partitioning step of 4-ary MGCPM

whenC
2

is used. This scrambler was not used in the simu-
lations due to the following reason: The changed mapping
realized by the second row ofC�1

3

, which results in the big-
ger distance gain in the third partitioning step, also leads to
a small loss in the bit error performance of the second level,
which in its turn leads to a loss in overall performance.

C. Generalized Concatenated MCPM Scheme

Now we are able to construct a generalized concatenated
code using the partitioning of the inner code (MGCPM).
Since each of them subsystems of signals should have
different distance characteristics, we usem outer convolu-
tional codes with error-correcting capabilities adapted to the
corresponding inner subsystems.

Below we briefly describe the procedures of encoding
and decoding which are similar to the TFM case [1]. In
Fig. 4 and Fig. 5 both procedures are shown by means of an
example withm = 3 partitioning levels.

First consider the modulation and encoding scheme
(Fig. 4). The binary information sequence is divided into
m binary subsequencesy(j) = (y

(j)
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; y
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; : : : ; y
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n
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(j = 1; : : : ;m) which are separately encoded bym inde-
pendent convolutional encoders. The outputs of all encoders
are interleaved and then used as them scrambler input se-
quencesz(j). Them binary output sequencesu(j) of the
scrambler are serialized, mapped onto anM -ary sequence
u with elemntsu

n

2 f0; 1; : : : ;M � 1g and this is fed into
the precoded GCPM modulator.

As a result of encoding and modulation, we obtain the
sequence of a generalized concatenated code with inner
nested MGCPM signals and outer convolutional codes.

As thejth outer convolutional code,j = 1; 2; : : : ;m,
we use binary codes of rateR

j

with parameters
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) and overall constraint length�
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denotes the free Hamming distance.
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Table 2: Code rates and branch complexities for GCC constructions with MGCPM (B
b

T
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= 0:3, h = 1=M ).

Name overall Code decoding + demod. = branch
of Scrambler RateR Rate complexity complexity complex.

constr. M L [bps] R
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per bit per bit per bit

GCC4 8 2 I

3

5=2 5=6 1=2 1 1 1=5 � 32 2=5 � (512 + 64 + 8) 240a

GCC3 8 2 I

3

2 2=3 1=8 7=8 1 1=2 � 32 1=2 � (512 + 64 + 8) 308
4GCPM 4 2 — 2 1 1 — — 0 1=2 � 64 32
GCC2 4 2 C

2

4=3 2=3 1=3 1 — 1=4 � 32 3=4 � (64 + 8) 62 b

GCC1 4 2 C

2

1 1=2 1=14 13=14 — 32 (64 + 8) 104c

GMSK 2 2 — 1 1 1 — — 0 8 8

GCCc 8 (4) 1 I

3

(I
2

) 3=2 1=2 0 1=2 1 1=3 � 32 2=3 � (16 + 4) 24
GCCb 8 (4) 1 I

3

(I
2

) 4=3 4=9 0 1=3 1 1=4 � 32 3=4 � (16 + 4) 23
GCCa 8 (4) 1 I

3

(I
2

) 1 1=3 0 1=5 4/5 32 (16 + 4) 52

Corrections after publication inProc. European Wireless '99 – 4.ITG-Fachtagung “Mobile Kommunikation”, ITG Fachbericht 157,
pages 331 – 396, Munich, Germany, October 1999:

a Accidentally the worse value298 = 1=5 � 32 + 2=3 � (512 + 64 + 8) was given in the published version.
b;c These both values had accidentally been swapped in the published version. See also discussion of simulation results (footnote 1).

The overall code rate of GCC then is
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j

. The overall Rate (in bits per symbol,
bps) of the encoded modulation scheme can be calculated
as

R = log

2

(M)R

c

:

In case of termination of the MGCPM modulation or the
outer codes there exists some fractional rate loss. This is
neglected in the following as blocklengths are expected to
be large enough.

Now consider the demodulation and decoding scheme
(Fig. 5). The generalized concatenated decoding (GCD) al-
gorithm of GCC also consists ofm steps. Each step con-
tains inner-stage demodulation of signals and outer-stage
decoding of the convolutional codes. Consider that the sig-
nals(t; u) is transmitted, and the signal

r(t) = s(t; v) + n(t)

is received wheren(t) is the additive Gaussian noise.
In the first step, i.e. j = 1, the received signal is

demodulated on the basis of the original MGCPM trellis
diagram. This procedure can be carried out by the sym-
bol by symbol maximuma posteriori probability (MAP)
algorithm [11] or the less complex soft-output Viterbi al-
gorithm (SOVA) [12], which can be easily applied to CPM
trellis diagrams. This results in the soft-output sequence
~z

(1)

= (~z

(1)

0

; ~z

(1)

1

; : : : ) for the encoded (and interleaved)
sequencez(1). This is de-interleaved and used as soft-input
information for the Viterbi decoder [4] of the first outer con-
volutional code. As a result, we obtain an information se-
quencêy(1) and its corresponding code sequence. The in-

terleaved code sequenceẑ(1) = (ẑ

(1)

0

; ẑ

(1)

1

; : : : ) uniquely
defines the subtrellis that has to be used in the second step
of the algorithm.

Consequently, we can demodulate the received signal
again, but now according to the nested subtrellis. The result
of this demodulation is the soft-output information~z(2) for
the second encoded sequence and can be used as input for

the second outer Viterbi decoder. This will yield a second
outer information sequencêy(2) and a code sequencêz(2)

that determines the modulation subset of the next step, and
so on.

In general, at thejth step of the algorithm on the basis
of the subtrellis of nested MGCPM, the received signal is
demodulated, thejth outer convolutional code is decoded
and the subtrellis for the(j + 1)th demodulation step is de-
termined.

After the demodulation and decoding of allm steps, the
estimated information sequenceŷ is obtained by serializing

the subsequenceŝy(1); : : : ; ŷ(m).

The GCD algorithm can be applied both with coherent
and noncoherent demodulation at the inner stage. In this
paper only the case of coherent demodulation is considered.

III. S IMULATION RESULTS AND DISCUSSION

In this section, we present the simulated bit error rates
(BER) of generalized concatenated MGCPM based on
known binary convolutional codes for the AWGN channel.
We have chosen block interleavers with sizes about 1000
bits and depths of9 to 10 rows which are sufficient to avoid
the dependence of errors in the consecutive symbols of each
outer code.

In order to preserve the spectral characteristics, on the
transmitting side we considered MGCPM as a 4-response
MCPM scheme. However, for complexity reasons, on the
receiver side the MGCPM (sub)systems are demodulated
on the basis ofM2-state trellis diagrams (L = 2). Al-
though this is suboptimal demodulation, there is nearly no
difference in bit error rate compared to optimal demodula-
tion withL = 4.

Demodulation complexity increases for8-ary MGCPM.
Therefore in this case, we even usedM1-state trellis dia-
grams for demodulation, limiting toL = 1. This is real sub-
optimal demodulation and bit error rates deteriorate expli-
citly compared to optimal demodulation. Therefore differ-
ent outer convolutional codes have to be chosen compared
to demodulation withL = 2.

In the following constructions, we used MGCPM mod-
ulation with the normalized bandwidthB

b

T

s

= 0:3. We



used outer binary convolutional codes with overall con-
straint length�

j

= 4 which have the same state complex-
ity W = 16 as the 4-ary MGCPM modulation system (with
L = 2). All code parameters were taken from [13] and [14].

For all GCC constructions presented, the parameters are
listed in Table 2. We also calculated branch complexities
(as proposed in [15]) and added them to Table 2.

In Fig. 6, we show the BER performance of encoded 4-
ary MGCPM of rateR = 1 bps (GCC1) andR = 4=3 bps
(GCC2) based on the scrambler matrix namedC

2

in Table 1,
and uncoded GMSK. GCC2 is constructed based on a single
(3; 1; 12) convolutional code. The second step remains un-
coded. GCC1 is constructed based on first code(14; 1; 56)

and second punctured code(14; 13; 2).
It can be seen, that having the same transmissioTable

rate (1 bit per symbol) the rate1=2 encoded 4-ary MGCPM
achieves a gain of approximately 4 dB at BER10�5 com-
pared to the uncoded GMSK. Branch complexity of GCC1
(104 branches1 per information bit) is 13 times higher than
that of uncoded GMSK (8 branches per information bit).

In Fig. 6, we also show the BER performance of encoded
8-ary MGCPM of rateR = 2 bps (GCC3) andR = 5=2 bps
(GCC4) based on partitioning without scrambler (I

3

), and
uncoded4-ary GCPM. Used code rates are given in Table 2,
whereas code rateR

j

= 1 means that some modulation
step stays uncoded. It can be seen from Fig. 6, that having
the same transmission rate (2 bits per symbol) the rate
2=3 encoded8-ary MGCPM (GCC3) achieves a gain of
approximately 3 dB at BER10�5 compared to the uncoded
4-ary MGCPM. Thereby branch complexity of GCC3 is
about 10 times higher than that of uncoded 4-ary MGCPM.
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In addition, in Fig. 7 we show the simulation results
for suboptimal demodulation withL = 1 of encoded8-ary
MGCPM. The results for demodulation withL = 2 and
L = 1 for the case of rateR = 1 bps encoded8-ary

1Corrected after publication. Originally the value 62 was given here,
which is the branch complexity of GCC2 and only about 8 times higher
than the GMSK branch complexity. See Table 2, footnote b,c.
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MGCPM are compared in Fig. 8.

At the end, we want to point out the following advant-
ages of encoded GCPM (and MGCPM) modulation espe-
cially with view to the EDGE project:

� As GCPM has constant envelope, no expensive linear
amplifiers are needed in contrast to the proposed8-PSK
EDGE modulation. Furthermore, additional rotation of
the signal is not necessary to avoid zero crossings as
needed for 8-PSK modulation.

� Power estimation at the receiver is much easier (com-
pared to the case of8-PSK) because of the constant en-
velope and power of the transmitted signal.

� Because (binary) GMSK with modulation indexh = 1=2

can be seen as a subset ofM -ary GCPM with modula-
tion indexh = 1=M , the conventional GSM trainings
sequence can be transmitted unchanged with an8-ary
GCPM modulator withh = 1=8. Therefore, the channel
estimation can stay unchanged and no additional modi-
fications are necessary.



� For GCPM, no additional filtering is necessary to ensure
spectral efficiency as it is done in the EDGE8-PSK pro-
posal.

� Rate adaptation can be achieved very easily using GCC
construction. For example, in case of8-ary MGCPM,
if the first partitioning step is unused (code rateR

1

=

0) this directly leads to4-ary MGCPM construction with
good performance for lower overall rates.
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