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Abstract| In this paper, we introduce the construction

of generalized concatenated (multilevel) encoded Gaussian

�ltered CPM systems. It is shown that the constructed

multilevel codes may operate with coherent and noncoher-

ent demodulation of signals and can be used in Gaussian

and Rayleigh-fading channels. The simulation results are

presented for both channel types. We show that the pro-

posed systems have error performance advantages over the

known constructions taken from the literature.

I. Introduction

C

ONTINUOUS phase modulation (CPM) is known as

a power and spectral e�cient modulation scheme suit-

able for application in digital communication systems [1].

An important property of CPM is its constant envelope,

which avoids the necessity of expensive linear ampli�ers.

In this work, we consider M -ary Gaussian �ltered CPM

(GCPM). This includes the frequently used binary case

known as Gaussian minimum shift keying (GMSK) [2]. For

GMSK, the alphabet size is M = 2 and the modulation

index is h = 1=2. The traditional approach is to con-

struct encoded GMSK systems by matching binary convo-

lutional codes, and joint demodulation and decoding in the

combined supertrellis by means of maximum-likelihood se-

quence detection based on the Viterbi algorithm [3]. In [4]

an alternative two-stage receiver was also investigated con-

sisting of separate demodulation of GMSK followed by de-

coding of the convolutional code. We refer to this proced-

ure as concatenated decoding (CD).

It was shown in [5] how generalized concatenated codes

(GCC) (or multilevel codes) can be constructed on the

basis of inner modulation with memory, namely tamed fre-

quency modulation. Here an additive white Gaussian noise

(AWGN) channel and coherent demodulation was assumed.

In this paper, we apply this approach to GCPM signals

which can be used for noncoherent demodulation as well.

In addition, we show some simulated bit error rate per-

formance results for the Rayleigh-fading channel.
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II. System Description

A. Modulation

In general, for CPM the transmitted signal can be de-

scribed by [1]

s(t; v) =

r

2E

T

cos(2�f

c

t+�(t; v) + �

0

)

where E is the symbol energy, f

c

is the carrier fre-

quency, T is the symbol time and �

0

is a constant ar-

bitrary phase o�set. The information-carrying phase is

given by �(t; v) = 4�h

P

1

n=0

v

n

q(t � nT ) where v =

v

0

; v
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; : : : ; v

n

; : : : is a semi-in�nite sequence ofM -ary sym-

bols v

n

2 f0; 1; : : : ;M � 1g and h is the modulation index.

The phase response is de�ned by q(t) =

R

t

�1

f(�)d� where

f(t) is the frequency response.

For Gaussian �ltered CPM, the frequency response can

be expressed as
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(1=
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=2)d� and BT is the

normalized bandwidth. Since the frequence pulse has an

in�nite duration, it is limited for practical reasons to L

symbol intervals such that q(LT ) = 1=2 is satis�ed. The

pulse length L can be considered as the memory of the

modulator and its value should be chosen large enough to

preserve the spectral characteristics.

If we view GCPM as an L-response GCPM scheme, it

allows one to apply the \tilted" representation of CPM

signals as introduced in [6]. Using this description, the

GCPMmodulator can be decomposed into a time-invariant

memoryless modulator and a time-invariant continuous

phase encoder with memory which we call the GCPM en-

coder. For simplicity, we will focus on M -ary modulation

with input v

n

2 f0; 1; : : : ;M�1g and modulation index

1=M . Then the GCPM modulator can be described by

Fig. 1.

It follows from Fig. 1 that the modulator state can be

uniquely described by the L-tuple

(v

n�1

; v

n�2

; : : : ; v

n�L+1

; c

n

)
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Fig. 1. Decomposition model of the L-response GCPM modulator.

where c

n

=

P

n�L

i=0

v

i

(mod M). Therefore, M -ary GCPM

with h = 1=M can be represented by means of a trellis

diagram which contains M

L

nodes (states) on each tier

and each node consists of M incoming and M outgoing

branches.

It can be seen from Fig. 1 that the conventional GCPM

encoder model results in an encoder with feedback. If the

M -ary input symbols of the GCPM modulator are di�er-

entially encoded by a conventional precoder with transfer

function T (D) = 1�D (subtraction is carried out modulo

M), an equivalent feedback-free GCPM modulator with

the same number of states is obtained. For details see [6].

B. Partitioning Principle

For the construction of GCC, a partitioning method is

needed which partitions the inner system (code or modula-

tion) into nested subsystems with improved characteristics,

e.g. Euclidean distance. In order to construct GCC based

on inner modulation with memory, i.e. GCPM, we ap-

ply the partitioning using a scrambler as presented in [5]

and [?].

Consider the trellis diagram of GCPM where each path

in the trellis corresponds to a transmitted GCPM signal.

In order to obtain a subsystem of GCPM signals, a path

puncturing method can be considered where paths are peri-

odically deleted. The reduced set of trellis paths gives the

subsystem. The idea is to puncture the paths having a

small free Euclidean distance. Unfortunately, using the

input sequence directly for puncturing does not always im-

prove the partitioning in terms of distances. A scrambler

is used to change the information to code sequence map-

ping which allows to carry out the e�cient path puncturing

procedure. Therefore, the cascade of a scrambler and the

original GCPM encoder is considered that results in an

equivalent GCPM encoder.

A systematic computer search was performed to �nd for

GCPM the best scrambler matrices C

m

for m = 2; 3; 4 par-

titioning levels. The results are listed in Tables I and II

where �

2;(j)

is the normalized (by 2E

b

and E

b

denotes

the energy per bit) squared free Euclidean distance in the

GCPM (sub)system step j, j = 1; 2; : : : ;m.

We used the sign \

0

" in order to di�erentiate between two

possible scrambler matrices with the same number of par-

titioning levels.

C. Generalized Concatenated GCPM Scheme

Now we are able to construct a generalized concaten-

ated code using the partitioning of the inner code (GCPM).

TABLE I

Scrambler Matrices for GMSK

C

m

Scrambler

j

�

2;(j)

BT = 0:25 BT = 0:3

C

2

�

1 0

1+D 1

�

1 1.75 1.82

2 6.00 6.00

C

0

2

1

1+D

�

1 1

D 1

�

1 1.75 1.82

2 4.00 4.00

C

3

 

0 1 0

1 1 0

D 1+D 1

!

1 1.75 1.82

2 3.19 3.42

3 8.00 8.00

C

4

0

@

1 1 0 0

0 1 1 0

1 1 1 0

1 1+D D 1

1

A

1 1.75 1.82

2 1.75 1.82

3 6.00 6.00

4 9.13 9.39

TABLE II

Scrambler Matrices for Quaternary GCPM (BT = 0:3) with

h = 1=4

C

m

Scrambler j �

2;(j)

C

2

�

1 D

D 1+D

2

�

1 1.09

2 5.11

C

4

0

@

D

2

1+D 1+D 1+D

2

1+D 1 1 1+D

D+D

2

D D 1+D+D

2

D+D

2

1+D D 1+D+D

2

1

A

1 1.09

2 1.20

3 3.63

4 9.68

Since each of the m subsystems of signals may have di�er-

ent distance characteristics, we can use m outer convolu-

tional codes with error-correcting capabilities adapted to

the corresponding inner subsystems. Below we briey de-

scribe the procedures of encoding and decoding which are

similar to the TFM case [5].

The binary information sequence is divided into m sub-

sequences which are separately encoded by m independent

convolutional encoders. Then the outputs of all encoders

are either �rst interleaved or used directly as the scram-

bler input sequences. The m binary output sequences of

the scrambler are serialized (then mapped onto an M -ary

sequence, if M > 2), and the resulting sequence is fed into

the precoded GCPM modulator. As a result of encoding

and modulation, we obtain the sequence of a generalized

concatenated code with inner nested GCPM signals and

outer convolutional codes. As the jth outer convolutional

code, j = 1; 2; : : : ;m, we use binary codes with paramet-

ers (n

j

; k

j

; d

(j)

f

) and constraint length �

j

where d

(j)

f

denotes

the free Hamming distance. The overall code rate of GCC

R = (1=m)

P

m

j=1

R

j

, with R

j

= k

j

=n

j

.

The generalized concatenated decoding (GCD) al-

gorithm of GCC consists of m steps. Each step contains

inner-stage demodulation of signals and outer-stage decod-

ing of the convolutional codes. In the �rst step, the re-

ceived signal is demodulated on the basis of the original

GCPM trellis diagram. This procedure can be carried out

by the symbol by symbol maximum a posteriori probab-

ility (MAP) algorithm [7] or the less complex soft-output

Viterbi algorithm (SOVA) [8], which can be easily applied

to CPM trellis diagrams. This results in soft-output, which

is used as soft-input information for the decoder of the �rst



outer convolutional code. Then, the �rst outer convolu-

tional code is decoded by means of Viterbi algorithm [3].

As a result of the decoding, we obtain the information se-

quence which was encoded by the �rst outer encoder. The

decoded (and deinterleaved) sequence uniquely de�nes the

subtrellis that can be used in the second step of the al-

gorithm. Consequently, we can demodulate the received

signal again, but now according to the nested subtrellis.

The result of this demodulation is used as input for the

second outer convolutional code and so on. In general, the

received signal is demodulated at the jth step based on

the jth nested GCPM subtrellis. Based on this decoding

result, the subtrellis is constructed for the (j + 1)th step.

The GCD algorithm can be applied both with coherent

and noncoherent demodulation at the inner stage. First let

us focus our attention on GMSK signals and transmission

over an AWGN channel. So far only coherent demodulation

of GMSK signals has been considered. In the following, we

investigate the noncoherent case. Assume the signal s(t; v)

is transmitted, and the signal

r(t) = s(t; v) + n(t)

is received where n(t) is the noise.

In [9], the Viterbi algorithm was used for noncoher-

ent demodulation of CPM signals which includes GMSK.

However, this approach is limited to hard-output decisions.

For performance reasons, the soft ouput Viterbi algorithm

(SOVA), originally introduced by Hagenauer and Hoe-

her [8], was proposed for noncoherent demodulation of

GMSK signals [10]. In [11], a simpli�ed receiver is de-

scribed for di�erential binary phase shift keying which al-

lows di�erential detection. In the following we apply the

same rule to GMSK using the scrambler C

0

2

given in Table I

which allows di�erential detection for coherent and nonco-

herent demodulation. The resulting modulator can be con-

sidered as the cascade of a recursive scrambler, described

by the matrix

1

1 +D

�

1 1

D 1

�

;

and a precoded (non-recursive) GMSK encoder with trans-

fer function

(D;D

2

; : : : ; D

L

) :

Since we use a simpli�ed receiver for GMSK which allows

di�erential detection, we inherently assume L = 1 at the

receiver stage. Hence, the inner scrambled and precoded

GMSK encoder can be described by the matrix

1

1

1 +D

�

D 1

D D

�

:

Thus, the inner modulation results simply in a non-

precoding GMSK modulator.

1

Corrected after publication in Conference Record 3rd ITG Con-

ference, Source and Channel Coding, ITG Fachbericht 159, pages

133{137, Munich, Germany, January 2000. There accidentally the

wrong matrix

D

1+D

�

1 1

D 1

�

was given.

Now consider the encoding and decoding schemes for this

particular case (Fig. 2). We denote y

(1)

and y

(2)

as the bin-

ary information sequences and z

(1)

and z

(2)

as the encoded

sequences for the �rst and second outer encoders, respect-

ively. The encoded sequences are serialized and directly

used as the input sequence v of the GMSK modulator.

GMSK

Modulator

v

z

(2)

z

(1)

Encoder 2

Outer

Outer

Encoder 1

y

(1)

y

(2)

s(t; v)

(a)

GMSK

GMSK

Subsystem

Decoder 1

Outer

Decoder 2

System

Outer

~y

(2)

r(t) �(z

(1)

)

ẑ

(1)

�(z

(2)

)

~y

(1)

(b)

Fig. 2. Generalized concatenated encoder (a) and decoder (b) for

m = 2.

In the �rst demodulation step, i.e. j = 1, we derive the

soft-output information for the encoded binary sequence

z

(1)

= (z

(1)

0

; z

(1)

1

; : : : ; z

(1)

n

; : : : ) of the �rst outer code from

� (z

(1)

n

) = Re

�

y

2n�1

y

�

2n�2

�

(1)

where y

n

denotes the derotated sample at time t = nT ob-

tained from the received sample r

n

by y

n

= r

n

exp(j�=2),

and \

�

" is the complex conjugate operator. The soft out-

put sequence �(z

(1)

) is delivered to the �rst outer de-

coder. As a result of decoding, we get the �rst inform-

ation sequence ~y

(1)

and its corresponding code sequence

ẑ

(1)

= (ẑ

(1)

0

; ẑ

(1)

1

; : : : ; ẑ

(1)

n

; : : : ). For notation purposes, we

set ẑ

(1)

n

= 0! +1 and ẑ

(2)

n

= 1! �1.

In the second demodulation step, we use the sequence

ẑ

(1)

and derive the soft-output information for the en-

coded binary sequence z

(2)

= (z

(2)

0

; z

(2)

1

; : : : ; z

(2)

n

; : : : ) of

the second outer code from

� (z

(2)

n

) = Re

�

y

0

2n

y

0

�

2n�1

�

: (2)

Here y

0

2n

= (y

2n

+ ẑ

(1)

n+1

y

2n+1

)=2 and y

0

2n�1

= (y

2n�1

+

ẑ

(1)

n

y

2n�2

)=2 are normalized variables taking into account

the results of the �rst outer decoding.

This soft-output information is used as a soft-input for

the second outer Viterbi decoder that yields the second

information sequence ~y

(2)

.



III. Simulation Results

In this section, we present the simulated bit error

rates (BER) of concatenated and generalized concatenated

GCPM based on known binary convolutional codes. We

chose a block interleaver with depth of 10 rows which was

su�cient to avoid the dependence of errors in the consec-

utive symbols of each outer code.

First, consider transmission over an AWGN channel and

coherent demodulation of GCPM signals. In order to pre-

serve the spectral characteristics, we consider the GCPM

transmitter as a 4-response CPM scheme. However, for

complexity reasons, the GCPM (sub)systems are demodu-

lated on the basis of M

2

-state trellis diagrams, i.e. the

case when L = 2. In the following constructions, we used

outer binary convolutional codes which have the same state

complexityW as the modulation system, i.e. W = 4 states

for GMSK and W = 16 states for quaternary GCPM. The

code parameters were taken from [12] and [13].

In Fig. 3, we show the simulation results of rate R = 2=3

and R = 1=2 encoded GMSK based on the scrambler

matrices C

2

and C

3

which are given in Table I. We

have chosen the outer code parameters (n

j

; k

j

; d

(j)

f

) as fol-

lows. For R = 2=3 | C

2

: �rst code (3,1,8), second step

uncoded; C

3

: �rst code (3,1,8), second punctured code

(3,2,3), third step uncoded. For R = 1=2 | C

2

: �rst

code (5,1,13), second punctured code (5,4,2); C

3

: �rst code

(6,1,16), second punctured code (9,4,6), third punctured

code (9,8,2). All convolutional codes have the same con-

straint length � = 2.
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Fig. 3. Rate R = 1=2 and R = 2=3 encoded GMSK with BT = 0:3;

coherent demodulation; W = 4.

In Fig. 4, we show the BER performance of rate R = 2=3

and 1=2 encoded quaternary GCPM based on the scrambler

matrix named C

2

in Table II, and uncoded GMSK and qua-

ternary GCPM. The rate-2=3 GCC is constructed based on

a single (3; 1; 12) convolutional code. The second step re-

mains uncoded. The rate-1=2 GCC is constructed based on

�rst code (14; 1; 56) and second punctured code (14; 13; 2).

All convolutional codes have the same constraint length

� = 4. It can be seen from Fig. 4 that having the same

transmission rate (1 bit per symbol) the rate-1=2 encoded

GCPM scheme achieves a gain of approximately 4 dB at a

BER of 10

�5

compared to uncoded GMSK.
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Fig. 4. Rate R = 1=2 and R = 2=3 encoded GCPM with BT = 0:3;

coherent demodulation; W = 16.

The AWGN channel is the channel model most com-

monly assumed for the performance evaluation of encoded

modulation schemes. However, for many systems, such as

mobile radio or satellite communication, data is transmit-

ted over a fading channel. In general, optimal codes for

the AWGN channel are not always the optimal for fading

channels, and vice versa. However, the characteristics of

some channels may vary between the features of an AWGN

channel and those of a fading channel. It is therefore ad-

vantageous to design codes which perform well in both en-

vironments. We note that our GCC constructions can be

used both on Gaussian and fully interleaved frequency non-

selective slowly fading channels. In such a model the fading

amplitude is assumed to be Rician distributed and constant

for one symbol interval. The Rice factor � denotes the ra-

tio of the signal energy of a dominant path to the energy

of the di�use paths. For � = 0 we have Rayleigh fading,

and for � !1 the fading channel reduces to the nonfading

Gaussian channel.

In order to compare two approaches, the one given in [4]

and the second described here, we present in Fig. 5 simu-

lation results in the AWGN and fully interleaved Rayleigh-

fading channel for concatenated code (CC) and GCC (m =

2) based on inner GMSK and outer binary convolutional

codes. Our model assumed CD and GCD algorithm re-

spectively with inner noncoherent demodulation. For CC

construction, we used the convolutional code (2; 1; 5). For

GCC we have chosen the code (4; 1; 10) as the �rst code,

and the punctured code (4; 3; 3) as the second code. Thus,

as in the CC case, the GCC has overall code rate 1=2. Fur-

thermore, all convolutional codes have the same constraint

length � = 2.
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demodulation; W = 4.

The overall receiver complexity including demodulation

and decoding for CC and GCC is mainly determined by

the decoding of the outer code(s). In the case of CC, we

assume Viterbi decoding of a single rate-1=2 outer code on

the basis of a 4-state trellis. The branch complexity per

decoded information bit of this code is equal to 4 � 2 = 8.

For GCC, we used a rate-1=4 and a punctured rate-3=4

code, both with 4-state complexity. As a result, we obtain

a branch complexity of (2�4+3�2�4)=4 = 8 per information

bit which is the same as in the CC case. However, the GCC

shows a signi�cant coding gain in comparison with the CC.
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